Graphs, Syzygies, and Multivariate Splines

نویسنده

  • Lauren L. Rose
چکیده

The module of splines on a polyhedral complex can be viewed as the syzygy module of its dual graph with edges weighted by powers of linear forms. When the assignment of linear forms to edges meets certain conditions, we can decompose the graph into disjoint cycles without changing the isomorphism class of the syzygy module. Thus we can use this decomposition to compute the homological dimension and the Hilbert series of the module. We provide alternate proofs of some results of Schenck and Stillman, extending those results to the polyhedral case. We also provide examples which illustrate the role that geometry plays in determining the syzygy module.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENETIC PROGRAMMING AND MULTIVARIATE ADAPTIVE REGRESION SPLINES FOR PRIDICTION OF BRIDGE RISKS AND COMPARISION OF PERFORMANCES

In this paper, two different data driven models, genetic programming (GP) and multivariate adoptive regression splines (MARS), have been adopted to create the models for prediction of bridge risk score. Input parameters of bridge risks consists of safe risk rating (SRR), functional risk rating (FRR), sustainability risk rating (SUR), environmental risk rating (ERR) and target output. The total ...

متن کامل

ESTIMATING DRYING SHRINKAGE OF CONCRETE USING A MULTIVARIATE ADAPTIVE REGRESSION SPLINES APPROACH

In the present study, the multivariate adaptive regression splines (MARS) technique is employed to estimate the drying shrinkage of concrete. To this purpose, a very big database (RILEM Data Bank) from different experimental studies is used. Several effective parameters such as the age of onset of shrinkage measurement, age at start of drying, the ratio of the volume of the sample on its drying...

متن کامل

Toeplitz and Toeplitz-block-Toeplitz matrices and their correlation with syzygies of polynomials

In this paper, we re-investigate the resolution of Toeplitz systems T u = g, from a new point of view, by correlating the solution of such problems with syzygies of polynomials or moving lines. We show an explicit connection between the generators of a Toeplitz matrix and the generators of the corresponding module of syzygies. We show that this module is generated by two elements of degree n an...

متن کامل

Representation Stability for Syzygies of Line Bundles on Segre–veronese Varieties

The rational homology groups of the packing complexes are important in algebraic geometry since they control the syzygies of line bundles on projective embeddings of products of projective spaces (Segre–Veronese varieties). These complexes are a common generalization of the multidimensional chessboard complexes and of the matching complexes of complete uniform hypergraphs, whose study has been ...

متن کامل

Moments of Dirichlet Splines and Their Applications to Hypergeometric Functions

Dirichlet averages of multivariate functions are employed for a derivation of basic recurrence formulas for the moments of multivariate Dirichlet splines. An algorithm for computing the moments of multivariate simplex splines is presented. Applications to hypergeometric functions of several variables are discussed. Introduction. In [9], H.B. Curry and I.J. Schoenberg have pointed out that univa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2004